The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates
نویسندگان
چکیده
An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%.
منابع مشابه
برآورد رطوبت لحظهای سطح خاک در فصل سرد با استفاده از دادههای سنجش از دور نوری و حرارتی در شرایط بدون ابرناکی
A limited number of agricultural weather stations measure moisture in the soil surface. Furthermore, soil moisture information may be required in areas where there is no weather station. The aim of the present study was to use Landsat 8 satellite images to estimate soil surface moisture in an area without agricultural meteorological stations. Gravimetric soil moisture for a total of 14 samples ...
متن کاملDetermination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)
According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...
متن کاملStudy the Relationship between Digital Number Values from ETM+ Satellite Images and Soil Organic Matter Using Artificial Neural Network and Regression Models
Soil organic carbon (SOC) content plays a key role in soil biological, chemical and physical behavior and knowledge about its state and distribution is essential for the effective and sustainable use of soil. Laboratory measurements of SOC are costly and time consuming and have not the possibility to extend the results to similar areas. Recently, the use of remote sensing data for evaluation of...
متن کاملIranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملThe Accuracies of Himawari-8 and MTSAT-2 Sea-Surface Temperatures in the Tropical Western Pacific Ocean
Over several decades, improving the accuracy of Sea-Surface Temperatures (SSTs) derived from satellites has been a subject of intense research, and continues to be so. Knowledge of the accuracy of the SSTs is critical for weather and climate predictions, and many research and operational applications. In 2015, the operational Japanese MTSAT-2 geostationary satellite was replaced by the Himawari...
متن کامل